2000 SERIES SUBSEA ROTARY ACTUATOR

5

С

В

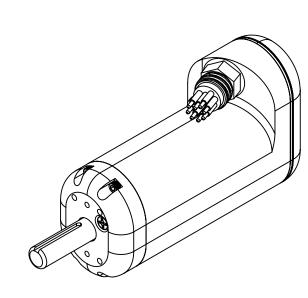
А

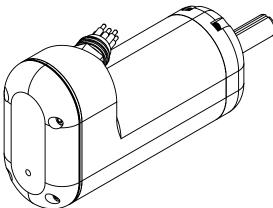
General Specifications:

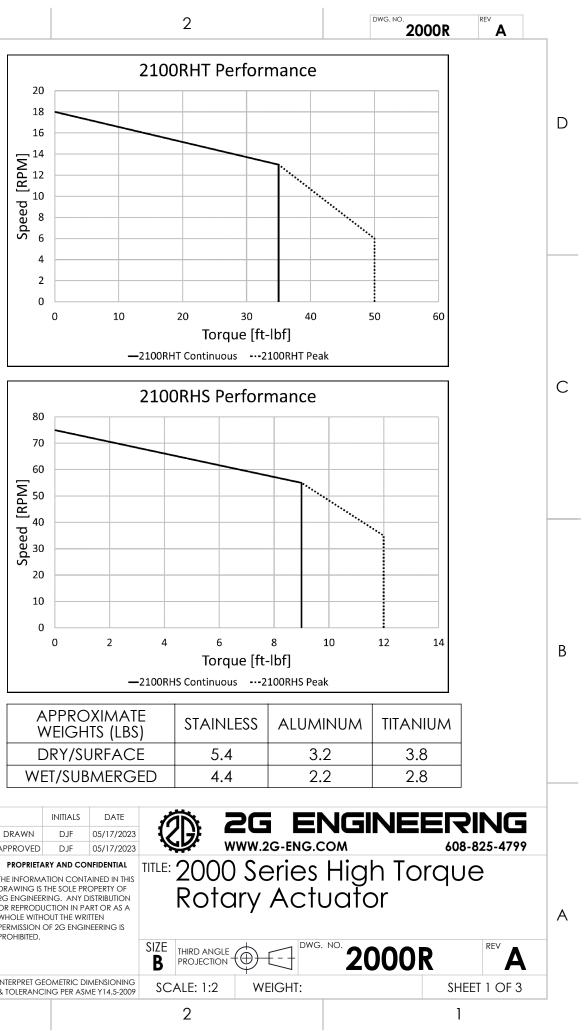
High Torque model:

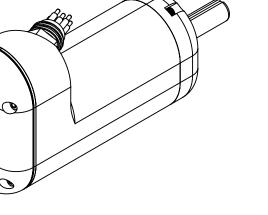
6

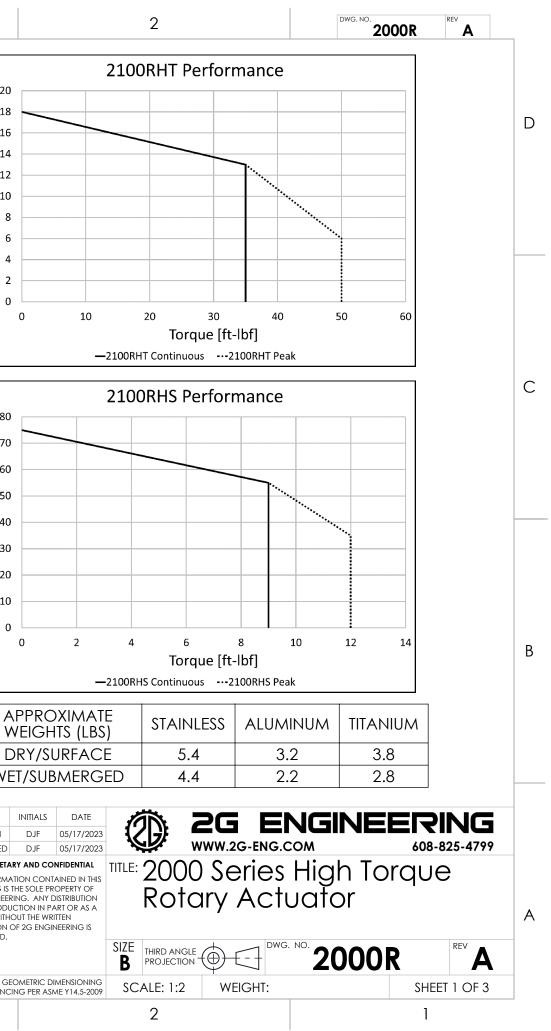
- Maximum output torque: 50 ft-lbf
- Maximum output speed: 18 RPM
- Continuous duty: 35 ft-lbf @ 13 RPM ٠
- High Speed model:
 - Maximum output torque: 12 ft-lbf •
 - Maximum output speed: 75 RPM
 - Continuous duty: 9 ft-lbf @ 55 RPM
- Integrated servo control and motor driver
- Internal pressure compensator
- 8-pin micro wet-mate connector standard
- Communication physical layer options: RS-232, RS-485, CAN, ethernet, analog voltage control, and analog current control
- Max radial load: 40 lbf (at end of 2.00" long shaft)
- Max axial load: 100 ft-lbf

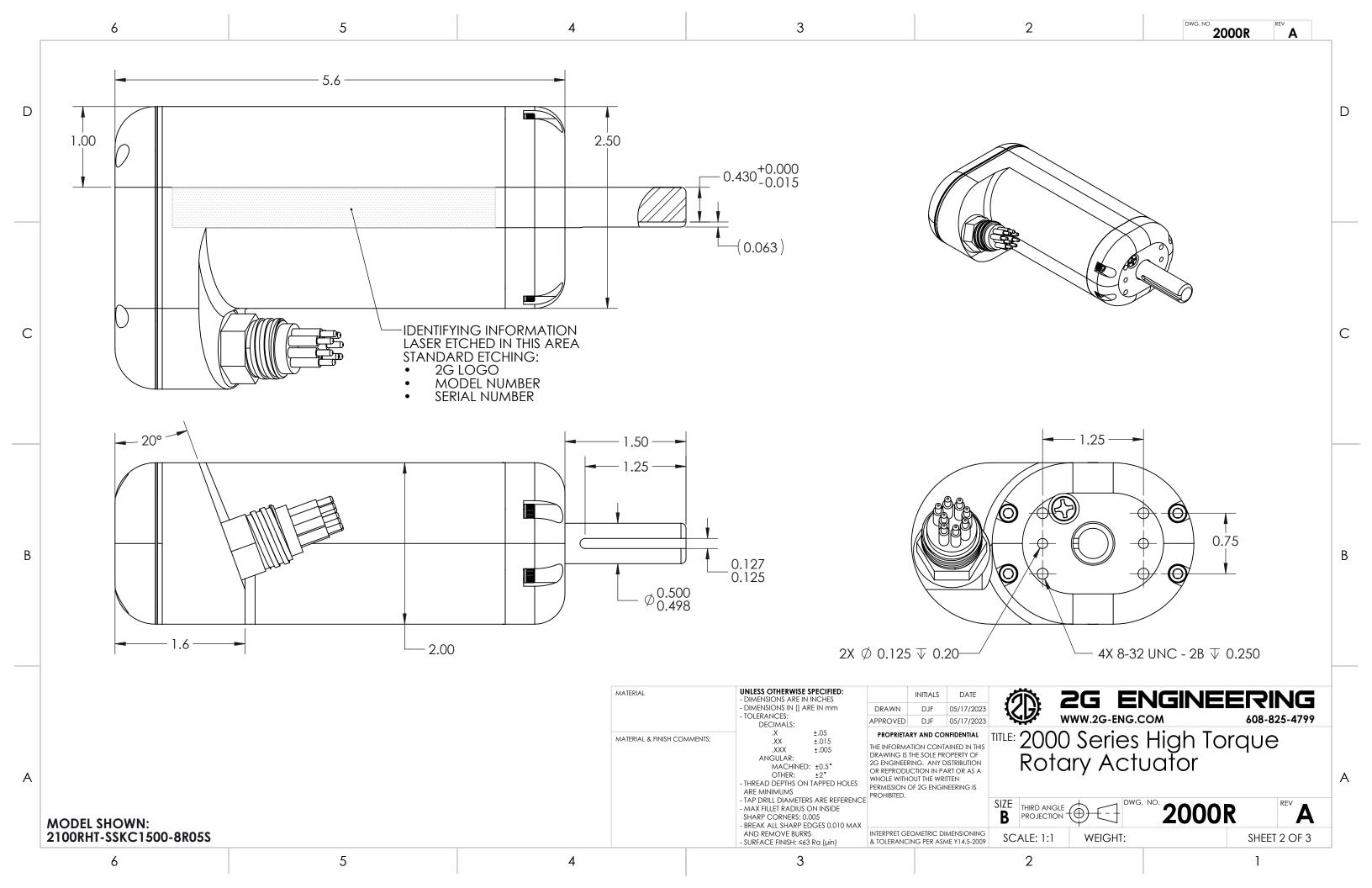

Operating Environment:


- Designed for mission-critical subsea use
- **IP69K** sealed housing
- Corrosion resistant material options
 - Stainless steel, passivated
 - Aluminum, hardcoat anodized
 - Titanium
- Maximum operational depth: 6500 meters
- Operating temperature range: -20°C to 65°C
- Storage temperature range: -30°C to 85°C
- Operating voltages between 12-120 Volts DC.


Onboard Motor Driver and Servo System:


- Closed-loop position control with PID tuning
- Configurable limits for current, power, velocity, and acceleration
- Configurable motion profile generator
- Contactless non-wearing absolute position sensor
- Does not require homing
- 0.002 ° Resolution, 0.2 ° Precision, 1 ° Accuracy
- Standard protocol: MODBUS
- Standard baud rate: 115200


Click here for user manual and communication protocol information.


	UNLESS OTHERWISE SPECIFIED: - DIMENSIONS ARE IN INCHES							
	- DIMENSION	S IN [] AI	RE IN mm					
	- TOLERANCE	S:		ŀ				
	DECIM	ALS:						
	.X.		±.05					
aments:	.XX		±.015					
	XX	Х	+.005					
	ANGUI	AR						
				٦E				
				·-				
				·				
			-					
	- SURFACE FI	VISH: ≤63	3 Ra (µin)					
		~						
		- 3						
	MMENTS:	- DIMENSION - DIMENSION - DIMENSION - TOLERANCE DECIM .X .XX ANGUL MA OTI - THREAD DEI ARE MINIMU - TAP DRILL D - MAX FILLET SHARP COR - BREAK ALLS AND REMO	- DIMENSIONS ARE IN - DIMENSIONS IN [] A - DIMENSIONS IN [] A - TOLERANCES: DECIMALS: .X .XX ANGULAR: MACHINED OTHER: - THREAD DEPTHS ON ARE MINIMUMS - TAP DRILL DIAMETEF - MAX FILLET RADIUS SHARP CORNERS: 0. - BREAK ALL SHARP E AND REMOVE BURR	- DIMENSIONS ARE IN INCHES - DIMENSIONS IN [] ARE IN mm - TOLERANCES: DECIMALS: .X ±.05 .XX ±.015 .XX ±.005 ANGULAR: MACHINED: ±0.5° OTHER: ±2° - THREAD DEPTHS ON TAPPED HOLES				

4

DRAWN	DJF	05/17/2025									
APPROVED	DJF	05/17/2023									
PROPRIETARY AND CONFIDENTIAL											
THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF 2G ENGINEERING. ANY DISTRIBUTION OR REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF 2G ENGINEERING IS PROHIBITED.											
INTERPRET GI	EOMETRIC DI	MENSIONING									

& TOLERANCING PER ASME Y14.5-2009

3

D

С

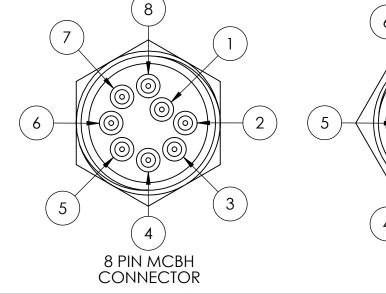
В

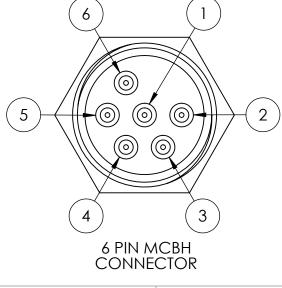
А

6

5

4


3


SE	RIES		OUTPUT		1	HOUSING MATERIAL		SHAFT TYPE		AFT \ETER*	SH/ LEN		COMMUNICATION		VOLTAGE		SOFTWARE		
2100R	SUBSEA	HT	HIGH TORQUE		SS	STAINLESS STEEL	К	KEYED	Α	1/4"	0500	0.50"		6L	RS-232 AND RS-485, NON-ISOLATED	01	12-30 VDC RANGE	S	MODBUS/ CANOPEN
		HS	HIGH SPEED		AL	ALUMINUM	S	SQUARE	В	3/8"	0830	0.83"		8L	RS-232, RS-485, AND 0-10V ANALOG VOLTAGE CONTROL, NON-ISOLATED	05	20-55 VDC RANGE	G	2G PACKETS/ RAW CAN FRAMES
				-	TI	TITANIUM	F	FLAT	С	1/2"	1000	1.00"	-	8M	RS-232, CAN, AND 0-10V ANALOG VOLTAGE CONTROL, NON-ISOLATED	09	55-120 VDC RANGE		
											1500	1.50"		8R	RS-232 AND RS-485			1	
											2000	2.00"		8V	RS-232 AND 0-10V ANALOG VOLTAGE CONTROL				
														8C	RS-232 AND CAN				
														8E	RS-232 AND ETHERNET				

	PIN ASSIGNMENTS											
		NON-ISOLAT AVAILABLE WITH ANY VO		ISOLATED AVAILABLE WITH -05 AND -09 VOLTAGE OPTIONS ONLY.								
PIN	6L	8L	8M	8R	8V	8C	8E					
1	RS-232 TX	VIN -	VIN -	VIN -	VIN -	VIN -	VIN -					
2	RS-232 RX	VIN +	VIN +	VIN +	VIN +	VIN +	VIN +					
3	RS-485 -	0-10V ANALOG INPUT	0-10V ANALOG INPUT	N/C	N/C	N/C	RS-232 TX					
4	VIN +	0-10V ANALOG OUTPUT	0-10V ANALOG OUTPUT	COMMS GND	COMMS GND	COMMS GND	RS-232 RX					
5	VIN -	RS-232 TX	RS-232 TX	RS-232 TX	RS-232 TX	RS-232 TX	ETHERNET TX+					
6	RS-485 +	RS-232 RX	RS-232 RX	RS-232 RX	RS-232 RX	RS-232 RX	ETHERNET TX-					
7	N/A	RS-485 +	CAN HI	RS-485 +	0-10V ANALOG INPUT	CAN HI	ETHERNET RX+					
8	N/A	RS-485 -	CAN LO	RS-485 -	0-10V ANALOG OUTPUT	CAN LO	ETHERNET RX-					

4

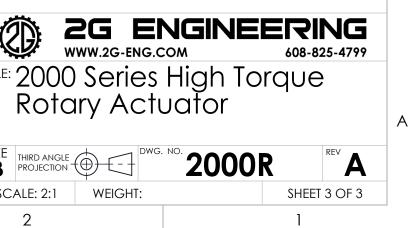
5

*HIGH TORQUE UNITS REQUIRE A SHAFT DIAMETER OF AT LEAST 0.500" OR 0.375" SQUARE, AND A LENGTH OF AT LEAST 0.830".

MATERIAL		UNLESS OTHERWISE S			INITIALS	DATE	10
		- DIMENSIONS IN [] AR	E IN mm	DRAWN	DJF	05/17/2023	
		- TOLERANCES: DECIMALS:		APPROVED	DJF	05/17/2023	7
MATERIAL & FINISH CON	MMENTS:	.X .XX .XXX ANGULAR: MACHINED: OTHER: THREAD DEPTHS ON ARE MINIMUMS TAP DRILL DIAMETERS MAX FILLET RADIUS C SHARP CORNERS; 0.C - BREAK ALL SHARP ED	±2° IAPPED HOLES ARE REFERENCE IN INSIDE 105		THE SOLE PR RING. ANY E JCTION IN PA OUT THE WR	AINED IN THIS OPERTY OF DISTRIBUTION ART OR AS A TTEN	TITLE: SIZE B
		AND REMOVE BURRS - SURFACE FINISH: ≤63				MENSIONING AE Y14.5-2009	SC.
		3					

	2000R

DWG. NO


Â

D

С

В

STOCKED SHAFT OPTIONS*									
CODE STYLE DIAMETER LENGT									
C1500	FLAT	0.500''	1.500"						
C1500	KEYED	0.500''	1.500"						
2000	KEYED	0.500''	2.000"						
30830	SQUARE	0.375"	0.830"						

